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Synopsis 

I t  is suggested that the existence of yield values in the elongational viscosity of concentrated 
suspensions of small particles in polymer melts leads to enhanced instability of uniaxial stretching 
and melt-spinning behavior. This is supported by analyses of filament stability. Severe instabilities 
are found in experiments on both simple stretching and melt spinning of filaments of suspensions 
of carbon black, titanium dioxide, and calcium carbonate in polystyrene. Necking and low elon- 
gations to break are observed in the former case. The melt-spinning results show “draw resonance” 
occurring a t  low drawdown ratios and high amplitudes of disturbances in the unstable region. 

INTRODUCTION 

I t  has been shown by various investigators over the years that polymer melts 
filled with high loadings of small particles such as carbon titanium 
d i ~ x i d e , ~ , ~  talc: and calcium carbonate4 exhibit yield values in their shear vis- 
cosity characteristics. Only recently, articles by Lobe and White3 and Tanaka 
and White4 have shown that yield values also exist in these systems in elonga- 
tional flow. It was found that through the presence of a yield value, the elon- 
gational viscosity of a polymer melt system can be transformed from an increasing 
function to a decreasing function of stretch rate. 

In recent years, investigators from our laboratories7-12 have made extensive 
studies of elongational flow characteristics and processing of homogeneous 
polymer melts. The results of these studies show that the deformation rate 
dependence of the elongational viscosity or rheological characteristics !eading 
to such behavior (deformation rate softening of the relaxation spectrum) strongly 
affects filament stability. A decreasing elongational viscosity gives rise to in- 
creased instability of uniaxial stretching flows including necking in simple fila- 
ment stretching and draw resonance in melt spinning. A similar view is implicit 
in studies of the onset of draw resonance for non-Newtonian fluids by Shah and 
Pearson,lS Han, Lamonte, and Shah,14 and Ishihara and Kase.15 

The results described in the preceding paragraph suggest that highly filled 
compounds should exhibit enhanced instability in elongational flow. I t  is our 
purpose in this article to develop this idea and investigate the elongational flow 
and melt-spinning stability of particle filled polymer melts and compare it to 
the behavior of the melt matrix. 
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THEORETICAL 

General 

We shall attempt to develop the ideas on filament stability described in the 
introduction. We are concerned with both the problem of stability of filaments 
in elongational flow and in melt-spinning operations (see Fig. 1) for fluids with 
yield values. In the Appendix we describe three-dimensional tensor constitutive 
equations for fluids with yield values. Our considerations in this paper are 
one-dimensional in character, and we need only to treat the uniaxial tensile stress 
oll, for which we write 

where Ye is the tensile yield value and v ( t )  is the effective Bingham differential 
viscosity. (The theory of fluids with yield values largely dates to Bingham16; 
compare Prager.17) For a Bingham plastic fluid (see Appendix), 

v ( t )  = 37 (2) 
In succeeding subsections, we develop some special theories of filament sta- 

bility and show how it decreases by the presence of a yield value. 

Simple Theory of Filament Stability 

In this subsection we develop an oversimplified theory of filament stability 
based on the model of Figure 2. This is suggested by the studies of Orowanls 
and Chang and Lodge.lg For a uniaxial elongational flow, the tension F in the 
filament is related to the tensile stress 011 through the expression 

F = A a l l  (3) 
where A is the cross-sectional area of the filament. 

Elongotlonol 
Flow Men 

SpiMlnq 
Fig. 1. Unstable elor gational flow and melt spinning. 
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Cross Sec'mon A, 

Cross Section A p  

t 
Fig. 2. Model for analysis filament instability. 

The elongation rate in uniaxial extension in an undisturbed flow may be ex- 
pressed in terms of the area A of the filament through 

(4) 
dvl 1 d L  1 d ( V / A )  1 d A  - - - 
dxl L d t  (VIA)  d t  A d t  

where V is the volume of the filament and L is the filament length. 

follows: 
The steady-state stress field in a fluid with a yield value may be expressed as 

During the uniaxial stretching process, necks develop in the filament. Let 
the filament be divided into two regions, 1 and 2. Region 2 with radius ( R  - 4 )  
represents the necked region whose cross section is less than the major homo- 
geneous 1 portion. From eq. (5), we may write the force balance of eq. (3) as 

This may be rewritten as 

where (A1 - A2) represents the defect size. This may be integrated to give 

(A1 - A 2 ) ( t )  = (A1 - A2)(0)  e s' (8)  

The defect grows approximately exponential in time depending upon the 
character of u. If u is constant and is given by eq. (2), we have 

(Al - A z ) ( t )  = (A1 - A2)(0)eYc,f/3q (9) 

The character of defect growth depends upon the dimensionless group: 
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where the t has been converted to filament length L divided by the velocity. This 
dimensionless group has been used by Oldroyd20 and Pragerll in studies of shear 
flow and has been called the Bingham number. 

Linearized Stability Model 

In this subsection we present a linearized stability analysis based on the ap- 
proach taken by Ide and White7.9.21 for viscoelastic fluids. Consider again the 
force balance of eq. (3). We may rewrite this in terms of a disturbance f :  

(11) 

Linearizing and subtracting out the expression for the unperturbed filament 
yields 

(12) 

( 1 3 ~ )  

F = T(R + ()2(Zll + a;]) 

2~R[Z11 + rR2a;l = 0 

We may write for the stresses all and oil for a filament 
- 

= Ye + UE 
where E is the steady-state extension rate and 

From eqs. (12) and (13), 

which may be rewritten 

For the case of a Bingham plastic fluid (constant u) ,  eq. (16) becomes 

Again we see the stability of a filament is decreased by the presence of the yield 
value. The extent of decrease is determined by the Bingham number, which 
has the form Y,/rlE. 

Melt-Spinning Instability 

The force balance and continuity equation for melt spinning is9J3-15 

F = A a l l  (184 

Introducing eq. (1) and combining these expressions gives 
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We must simultaneously solve eqs. (18b) and (19). If we introduce a charac- 
teristic velocity u1 of fiber radius R and length L, we may write 

and transform eqs. (18b) and (19) to 

dA* b - + -y (A*u;) = 0 at* d x ,  

FL Y,L dA* bA* + u ;  7) 
u R 2 U - (  ~ U ) ~ * - ( d t x  ax 1 

-- - 

There are clearly two dimensionless groups which characterize this problem. 
The first dimensionless group, FL/uR2U, also arises for Newtonian fluids. The 
second group, Y,LIuU, is the Bingham number. 

It is our expectation that the Bingham number will act to destabilize the 
spinline. It should be equivalent to lowering the power law exponent in the work 
of Shah and Pearson,13 Han et al.,14 and Ishihara and Kase.16 These authors 
find that this destabilizes the spinline. 

A general view of the relationship between the two stability problems in el- 
ongational flow which we treat here is given by White and Ide.9 Interpretations 
for convected Maxwell (White-Metzner) viscoelastic models are given by these 
authors and Minoshima et al." Instabilities in stretching filaments and in melt 
spinning order in severity in the same manner. A similar effect seems to occur 
here with the Bingham number as the order parameter. We develop the theory 
of spinning in detail for fluids with yield values in a future article. 

EXPERIMENTAL 

Materials 

Compounds of polystyrene with carbon black, titanium dioxide, and calcium 
carbonate: the polystyrene was a Dow Styron 678U. The carbon black was a 
Columbian Carbon FEF-LS N542, the titanium dioxide was du Pont R101, the 
calcium carbonate was Pfizer Super-flex 200. Compounds with 10,20, and 30 
vol 9'0 particulates were prepared on a two-roll mill at 15OOC. The shear viscosity, 
principal normal stress difference, and elongational viscosity of the compounds 
at  180°C were given in an earlier paper.4 We show the steady-state elongational 
viscosity of the carbon black and titanium dioxide compounds in Figures 3 
and 4. 
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melts. 

Elongational Flow Stability 

Filaments of compounds of polymer melts with small particles were prepared 
in an Instron capillary rheometer using a die of diameter 0.058 in. The filaments 
were annealed and then stretched horizontally on a layer of silicone oil a t  180°C 
in an elongational rheometer developed in our laboratories.8 

Melt Spinning 

The fibers were melt spun from an Instron capillary rheometer using a die of 
diameter 0.058 in. The throughput was 0.09 cm3/min. An ice water quench was 
kept at 19.5 cm below the die. The fiber was spun through the bath and taken 
up on a 6.35-cm roll driven by 1/15 horsepower B and B motor. 

The diameter of the measured along its length using a thickness gauge. From 
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5. Elongation to break of polystyrene filaments containing carbon black. 

the diameter variation along the fiber, the ratio of the maximum diameter to the 
minimum one, DmaxlDO, was determined. The wavelength X of the disturbance 
was measured when a periodic fluctuation was found. The period of the fluc- 
tuation was determined from 

T = X/VL (22) 

This was evaluated as a function of draw ratio VLIVO. 

RESULTS 

In Figures 5 and 6 we show the influence of carbon black, titanium dioxide, 
and calcium carbonate on the elongation ratio LILo at  break of the initial poly- 
styrene resins. In each case the addition of particles significantly reduces the 
elongation to break. Visual observation shows neck development and apparent 
ductile failure in the sense of Ide and White.7-9,21 

At low drawdown ratios in the melt-spinning experiment, diameter fluctuations 
were observed but were small in magnitude and random in period. At  a critical 
drawdown ratio, the fluctuations became greatly increased in amplitude and 
periodic. The critical draw ratios VJVO for the onset of this amplified regular 

0 

i 
9 
C - 

E sec-'1 

Fig. 6. Elongation to break of polystyrene filaments containing titanium dioxide. 
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TABLE I 
Critical Drawdown Ratios for the Onset of Draw Resonance in Melt Spinning 

System Vl'l vo 
PS 
PS/carhon black (10%) 
PS/carbon black (20%) 
PS/TiOZ (10%) 
PS/TiO:! (20%) 
PS/CaCO:( (10%) 
PS/CaCO:, (20%) 

40 
7 
5 

10 
10 
10 
6 

disturbance are shown in Table I. These show that the presence of the particles 
greatly reduces the stability of the spinline. In Figure 7 we plot DmaxIDo as a 
function of VJVO. The amplitude of the disturbances are considerably higher 
for the particle-filled melts than for the base polystyrene for all VLIVO. The 
ratio of wavelength X to spinline length L, shown in Figure 8, increases with 
drawdown. In Figure 9 the period P is plotted as a function of drawdown VLIVO. 
It is seen to decrease almost inversely with VLIVO. 

INTERPRETATION 

The results of the preceding section show the destabilization of elongational 
flow for both simple stretching of filaments and melt spinning by the presence 
of high volume loadings of solid particles. This would seem to bear out the initial 
premise and theoretical arguments of this article. 

There are few studies in the literature of the elongational flow properties of 
filled polymer melts. Indeed only Han and Kimz2 have discussed the spinning 
of such a system (polypropylene filled with calcium carbonate). Adding the filler 
increases the spinline elongational viscosity x s p  and causes it to fall off more 

I I I I 

VL / vo 
Fig. 7. DmaxlDo as a function of drawdown VJVO for melt-spun filaments. 
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Fig. 8. Draw resonance wavelength as a function of drawdown ratio for melt-spun filaments. 

rapidly with deformation rate. This suggests greater spinline instability. 
However, this is not investigated by Han and Kim. 

It  might be conjectured that the observations of this paper should be inter- 
preted as hydrodynamic particle effects. Segregated groups of particles could 
be a “stress concentrator” which would lead to premature failure. However, 
the extensive mill mixing of the samples and visual observations make this in- 
terpretation doubtful. 

201 I I ,  I 

u 
‘0 20 40 60 a0 100 120 

VL f vo 
Fig. 9. Draw resonance period as a function of drawdown ratio for melt-spun filaments. 
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If one applies an analysis similar to Goddard's2" study of elongational flow 
of fiber-filled melts, one would expect that in concentrated suspensions in general 
the elongational viscosity function should more closely resemble the shear vis- 
cosity function.24 This would tend to make elongational viscosity of all sus- 
pensions an amplified decreasing function like the shear viscosity. This argu- 
ment has merit but in the present case where the shear viscosity has a yield value 
and the high low deformation rate viscosity is caused by interparticle forces, it 
is probably of secondary importance. I t  would seem more pertinent to sus- 
pensions of larger particles such as glass beads where interparticle interaction 
is much smaller. In any case, it should be examined in greater detail. 

This study was supported in part by the National Science Foundation through NSF Grant ENG 
76-19815. 

APPENDIX A 

Constitutive Equations of Plastic Fluids and Elongational Flow 

Formulation of constitutive equations for fluids with yield values dates to the work of Schwedoff 
and Bingham 60 years and more ago. These analyses were however one-dimensional in form and 
directed to shear flow. Three-dimensional tensor formulation of constitutive equations which re- 
spond as differentially linear fluids above the yield value date to the work of Hohenemser and PragerZ5 
and later Oldroyd.2fi This involved combining the von Mises yield surface and the Navier-Stokes 
Newtonian fluid. The Bingham-Hohenemser-Prager-Oldroyd (BHPO) constitutive equation is 
of form I 

a = o  t r P 2 < 2 Y 2  

P 1-- = H  t r P 2 > 2 Y 2  ( 7;/2) 

(A-la) 

(A-lb) 

where P is.the deviatoric stress tensor defined through 
1 

P = u - - ( t r  a)I 
3 

(A-lc) 

and H is 

H = 2,,a (A-2) 

Oldroydz5 later proposed using the same formulation with H representing the behavior of a viscous 
non-Newtonian fluid. This is accomplished through use of eq. (A-2) with 7 depending upon the 
invariants of the deformation rate tensor. 

The characteristics of materials which respond as viscoelastic fluids above a yield value were first 
considered by HuttonZ8 and later in more detail by White,2g Lobe and White" and by Tanaka and 
White.4-:30*31 Whitem presumes the constitutive equation is again of the form of eq. (A-1) only with 
H a memory functional equation of form 

-=  bul -2 ( d U 2 I d X 2 )  

a* 1 

For the BHPO fluid, 

~ 1 1  = X ( d u l / d x l )  = Ye + 87E 

where Y, ,  the yield value in uniaxial elongational flow, is 

Y e = & Y  

E is the elongation rate d u l l d x l ,  and x ,  the elongational viscosity, is 

(A-3) 

(A-4) 

(A-5) 

(A-6) 
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x = (Y , /E )  + 37 (A-7) 

For the plastic viscoelastic fluid, x depends upon the forms of j ~ 1 ( z )  and p2(z) .  If we take 

p1(z) = (G/7 )e - z / ’  j d z )  = o (A-8) 

it follows that 

(A-9) 

(A-10) 
Y e  3G7 
E 

x=-+ 
(1 - 2 ~ E ) ( 1  + 7E) 
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